

Ministry of Agriculture, Water and Rural Development

Department of Water Affairs

THE WATER ACT (ACT 54 OF 1956) AND ITS REQUIREMENTS IN TERMS OF WATER SUPPLIES FOR DRINKING WATER AND FOR WASTE WATER TREATMENT AND DISCHARGE

1 INTRODUCTION

The provisions of the Water Act are intended, amongst other things, to promote the maximum beneficial use of the country's water supplies and to safeguard water supplies from avoidable pollution.

The drinking water guidelines are not standards as no publication in the Government Gazette of Namibia exists to that effect. However the Cabinet of the Transitional Government for National Unity adopted the existing South African guidelines (461/85) and the guidelines took effect from April 1988 under the signature of the then Secretary for Water Affairs.

The section of the Water Act that relates to the discharge of industrial effluents are: Section 21(1) which states that the purification of waste water shall form an integral part of water usage and that purified effluents shall comply with the General Standard Quality restrictions as laid out in Government Gazette R553 of 5 April 1962 and Section 21(2) which further stipulates that this purified effluent be returned as close as possible to the point of abstraction of the original water. Where a local authority has undertaken the duty of disposing of all effluents from an industrial process the provision of Section 21(1) and 21(2) apply to the local authority and not the producer of the effluent. If there is difficulty in complying with these provisions then the applicant may apply for exemption from the conditions in term of Section 21(5) and 22(2) of the Water Act. The Minister may grant the issue of a Waste Water Discharge Permit under Section 21(5) subject to such conditions as he may deem fit to impose.

After independence, the Government of the Republic of Namibia, decided that for the interim the existing guidelines will continue to be valid and to remain in use until a proper study has been conducted and new standards has been formulated.

2 GUIDELINES FOR THE EVALUATION OF DRINKING-WATER QUALITY FOR HUMAN CONSUMPTION WITH REGARD TO CHEMICAL, PHYSICAL AND BACTERIOLOGICAL QUALITY

Water supplied for human consumption must comply with the officially approved guidelines for drinkingwater quality. For practical reasons the approved guidelines have been divided into three basic groups of determinants, namely:

Determinants with aesthetic implications: TABLE 1.

Inorganic determinants: TABLE 2.

Bacteriological determinants: TABLE 3.

Frequency for Bacteriological analysis: TABLE 4

General Standards for Article 21 Permit Effluents: TABLE 5

2.1 CLASSIFICATION OF WATER QUALITY

The concentration of and limits for the aesthetic, physical and inorganic determinants define the group into which water will be classified. See TABLES 1 and 2 for these limits.

Group A: Water with an excellent quality

Group B: Water with acceptable quality

Group C: Water with low health risk

Group D: Water with a high health risk, or water unsuitable for human consumption.

Water should ideally be of excellent quality (Group A) or acceptable quality (Group B), however in practice many of the determinants may fall outside the limits for these groups.

If water is classified as having a low health risk (Group C), attention should be given to this problem, although the situation is not critical as yet.

If water is classified as having a higher health risk (Group D), urgent and immediate attention should be given to this matter. Since the limits are defined on the basis of average lifelong consumption, short-term exposure to determinants exceeding their limits is not necessarily critical, but in the case of extremely toxic substances, such as cyanide, remedial measures should immediately be taken.

The overall quality group into which a water is classified, is determined by the determinant that complies the least with the guidelines for the quality of drinking water.

TABLE 1: DETERMINANTS WITH AESTHETIC / PHYSICAL IMPLICATIONS

DETERMINANT S	UNITS	LIMITS FOR GROUPS			
		А	В	С	D*
Colour	mg/l Pt**	20			
Conductivity	mS/m 25 C	150	300	400	400
	25/ALT + 248/C				
Total hardness	mg/I CaCO₃	300	650	1300	1300
Turbidity	N.T.U***	1	5	10	10
Chloride	mg/l Cl	250	600	1200	1200
Chlorine (free)	mg/l Cl	0,1- 5,0	0,1 – 5,0	0,1 – 5,0	5,0
Fluoride	mg/l F	1,5	2,0	3,0	3,0
Sulphate	mg/l SO₄	200	600	1200	1200
Copper	μg/I Cu	500	1000	2000	2000
Nitrate	mg/l N	10	20	40	40
Hydrogen Sulphide	μg/l H₂S	100	300	600	600
Iron	μg/l Fe	100	1000	2000	2000
Manganese	μg/l Mn	50	1000	2000	2000
PH****	pH-unit	6,0 - 9,0	5,5 - 9,5	4,0 – 11,0	4,0 - 11,0

*All values greater than the figure indicated. ** Pt = Platinum Units*** Nephelometric Turbidity Units***The pH limits of each group exclude the limits of the previous group

TABLE 2: INORGANIC DETERMINANTS

DETERMINANTS	UNITS	LIMITS FOR GROUPS			
		A	В	С	D*
Aluminium	μg/I AI	150	500	1000	1000
Ammonia	mg/l N	1	2	4	4
Antimonia	μg/l Sb	50	100	200	200
Arsenic	μg/I As	100	300	600	600
Barium	μg/l Ba	500	1000	2000	2000
Beryllium	μg/l Be	2	5	10	10
Bismuth	μg/l Bi	250	500	1000	1000
Boron	μg/l B	500	2000	4000	4000
Bromine	μg/l Br	1000	3000	6000	6000
Cadmium	μg/l Cd	10	20	40	40
Calcium	μg/l Ca	150	200	400	400
Calcium	μg/l CaCO ₃	375	500	1000	1000
Cerium	μg/l Ce	1000	2000	4000	4000
Chromium	μg/l Cr	100	200	400	400
Cobalt	μg/l Co	250	500	1000	1000
Cyanide (free)	μg/I CN	200	300	600	600
Gold	μg/I Au	2	5	10	10
lodine	μg/I I	500	1000	2000	2000
Lead	μg/l Pb	50	100	200	200
Lithium	μg/l Li	2500	5000	10000	10000
Magnesium	mg/l Mg	70	100	200	200
Magnesium	mg/l CaCO ₃	290	420	840	840
Mercury	μg/l Hg	5	10	20	20
Molybdenum	μg/l Mo	50	100	200	200
Nickel	μg/l Ni	250	500	1000	1000
Potassium	μg/l K	200	400	800	800
Selenium	μg/l Se	20	50	100	100
Silver	μg/l Ag	20	50	100	100
Sodium	μg/l Na	100	400	800	800
Tellurium	μg/l Te	2	5	10	10
Thallium	μg/l TI	5	10	20	20
Tin	μg/l Sn	100	200	400	400
Titanium	μg/l Ti	100	500	1000	1000
Tungsten	μg/I W	100	500	1000	1000
Uranium	μg/I U	1000	4000	8000	8000
Vanadium	μg/I V	250	500	1000	1000

2.2 BACTERIOLOGICAL DETERMINANTS

The bacteriological quality of drinking water is also divided into four groups, namely:

- Group A: Water which is bacteriological very safe
- Group B: Water which is bacteriological still suitable for human consumption
- Group C: Water which is bacteriological risk for human consumption,

which requires immediate action for rectification

Group D: Water, which is bacteriological unsuitable for human consumption

TABLE 3: BACTERIOLOGICAL DETERMINANTS

DETERMINANTS		LIMITS FOR	GROUPS	
	A**	B**	С	D*
Standard plate counts per 1 ml	100	1000	10000	10000
Total coliform counts per 100 ml	0	10	100	100
Faecal coliform counts per 100 ml	0	5	50	50
E. coli counts per 100 ml	0	0	10	10

All values greater than the figure indicated.** In 95% of the samples. NB If the guidelines in group A are exceeded, a follow-up sample should be analysed as soon as possible.

2.3 FREQUENCY FOR BACTERIOLOGICAL ANALYSIS OF DRINKING-WATER SUPPLIES

The recommended frequency for bacteriological analysis of drinking water is given in Table 4.

TABLE 4: FREQUENCY FOR BACTERIOLOGICAL ANALYSIS

POPULATION SERVED	MINIMUM FREQUENCY OF SAMPLING
More than 100 000	Twice a week
50 000 – 100 000	Once a week
10 000 – 50 000	Once a month
Minimum analysis	Once every three months

3 GENERAL STANDARDS FOR WASTE WATER DISCHARGE INTO THE ENVIRONMENT

All applications in terms of Section 21(5) and 22(2), for compliance with the requirements of Section 21(1) and 21(2) of the Water Act (Act 54 of 1956) that purified water shall comply with the General Standard as laid out in Government Gazette Regulation R553 of 5 April 1962.

Determinants	Maximum allowable levels
рН	5,5% – 9,5%
Dissolved oxygen	A saturation of at least 75%
Typical faecal coli counted/100ml	No typical coli should be
Temperature	35 C
Chemical oxygen demand	75 mg/l
Oxygen absorbed	10 mg/l
Biological oxygen demand	no value given
Total dissolved solids	Not more than 500 mg/l than
	the TDS' of the inlet water
Total suspended solids	25 mg/l
Sodium	Not more than 90 mg/l
Sodium concentration of the inlet water	
Fats, oil and grease	2,5 mg/l (!gravimetric method)
Chlorine, residual	0,1 mg/l as Cl
Free and saline ammonia	10 mg/l as N
Arsenic	0,5 mg/l as As
Boron	1,0 mg/l as B
Chromium, hexavalent	0,05 mg/l as Cr (VI)
Chromium, total	0,5 mg/l as Cr
Copper	1,0 mg/l as Cu
Lead	1,0 mg/l as Pb
Sulphide	1,0 mg/l as S
Fluorine	1,0 mg/l as F
Zinc	5,0 mg/l as Zn
Phenolic compounds	0,1 mg/l as phenol
Cyanide and related compounds	0,5 mg/l as CN

TABLE 5 GENERAL STANDARDS FOR ARTICLE 21 PERMITS (EFFLUENTS)

Herewith, the Guidelines for the Evaluation of Drinking Water for Human Consumption with regard to Chemical, Physical and Bacteriological Quality, as well as the General Standards for Article 21* Permits, are confirmed and remain in force until further notice.